If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-6t-35=0
a = 1; b = -6; c = -35;
Δ = b2-4ac
Δ = -62-4·1·(-35)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{11}}{2*1}=\frac{6-4\sqrt{11}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{11}}{2*1}=\frac{6+4\sqrt{11}}{2} $
| 4.25t+6=15.5t+15 | | 7=9h | | 5x+50=4(x-8) | | d/3+24=29 | | x4−2x3=16+8x−4x3 | | 62=9c+14-3c | | 11x-9=1/4(24x+44) | | 2(4t)=48 | | -13+4=9x-8 | | 7x+40=6x+42 | | C(4c+3)=0 | | 8-2(3x-3)=x | | 68=b+20 | | 4x−16=0 | | 8×4=(x×7)-(x×3) | | 5n+3n+2n=17-2+9 | | 4n-3=9n+12 | | 3,6-2,4m=12 | | 3t+4=-0.59 | | 6.4+7x/2.5=14.8 | | 3d-(-4)=7 | | 3x+26=11x+27 | | 8x=5/9 | | c^2-2c+1=11 | | 12-6x=9x-18 | | x/2.4=8.4 | | 3x-7=1+x | | -3y=5y+8 | | 72+x+2x+1=180 | | ½b+⅓b–20=–10 | | –9f−2=–10f | | 13-w=14 |